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1. Background: We have been introduced to a brief introduction to Data Assimilation in 

the lecture note on Gridpoint Statistical Interpolation (GSI) scheme & Concept of Observation 

Operator. Variational approaches fall under the class of Constant Statistical Methods of data 

assimilation. 3-Dimensional Variational (3D-Var) and 4-Dimensional Variational (4D-Var) data 

assimilation are the two commonly used variational approaches in NWP. For a data assimilation 

cycle, we require to have a background information file or first guess ሺ𝑥௕ሻ (in general, which is a 

short-range forecast from the previous assimilation cycle) and, observation or observed variables 

ሺ𝑦௢ሻ. The first guess of observations is obtained by interpolating the NWP model first guess 

forecast values to the observation location and converting the model variables to observation 

variables ሺ𝑦௢ሻ (if the observed variables are different from the model forecast variables like 

satellite radiances, etc). The first guess of observations are mathematically denoted as 𝐻ሺ𝑥௕ሻ, 

where ‘H’ is called the Observation Operator. The observation operator (H) performs the 

required transformation (model to observation variables) and interpolation to observation 

location or observation space as is termed in data assimilation. Once the model first guess is 

mapped into observation space, ‘observation increments’ or ‘innovations’ ൫𝑦௢ െ  𝐻ሺ𝑥௕ሻ൯ is 

computed, which is the difference between the model first guess and the observations. The 

analysis ሺ𝑥௔ሻ which is the best estimate of the current atmospheric state and serves as the initial 

condition for running the NWP model forecast is obtained by adding the observation increments 

or innovations to the NWP model first guess. Estimated statistical error covariances of the 

observations assimilated and the model forecast used as the first guess are applied in the form of 

Weights ‘W’ to compute the analysis, given by: 

 

𝑥௔ ൌ  𝑥௕ ൅ 𝑊 ሾ𝑦௢ െ 𝐻ሺ𝑥௕ሻ ሿ (1) 
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Different data assimilation schemes are based on eq-1. Differences between the schemes arise by 

the difference in the approach they take in combining the observations and the background 

values to produce the analysis. The matrix of weights ‘W’ is a function of the distance between 

the observations used for assimilation and the NWP model grid point. Optimal interpolation and 

variational methods are data assimilation schemes that come under the constant statistical 

approach. In Optimal Interpolation (Gandin 1963; Kalnay 2003), ‘W’ is determined by 

minimizing the analysis errors at each grid point. In variational methods, a cost function is 

defined which is proportional to the square of the distance between the analysis and both the 

observations used for assimilation and the background values (Sasaki 1970; Kalnay 2003). The 

analysis is then computed by minimizing the cost function. The cost function in variational data 

assimilation is formulated as: 

𝐽௩௔௥ሺ𝑥ሻ ൌ  𝐽௕ ൅ 𝐽௢ ൅ 𝐽௖ (2) 

where, 

𝐽௩௔௥ ⇒ The cost function 

𝐽௕  ⇒ Fit to background 

𝐽௢  ⇒ Fit to observation 

𝐽௖  ⇒ Constraint terms 

 

2. 3D-Var: In 3D-Variational Data Assimilation, the cost function (eq-2) is represented as: 

𝐽ଷ஽௏௔௥ሺ𝑥ሻ ൌ  ଵ

ଶ
ሺ𝑥 െ 𝑥௕ሻ் 𝐵ିଵ ሺ𝑥 െ 𝑥௕ሻ ൅ ଵ

ଶ
൫𝑦௢ െ 𝐻ሺ𝑥ሻ൯

்
𝑅ିଵ ൫𝑦௢ െ 𝐻ሺ𝑥ሻ൯ ൅ 𝐽௖ (3) 
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𝐽ଷ஽௏௔௥ሺ𝑥ሻ  ⇒ the cost function (𝐽௩௔௥) 

ଵ

ଶ
ሺ𝑥 െ 𝑥௕ሻ் 𝐵ିଵ ሺ𝑥 െ 𝑥௕ሻ  ⇒  fit to background (𝐽௕) 

ଵ

ଶ
൫𝑦௢ െ 𝐻ሺ𝑥ሻ൯

்
𝑅ିଵ ൫𝑦௢ െ 𝐻ሺ𝑥ሻ൯  ⇒ fit to observation (𝐽௢) 

 

where, 

𝑥 ⇒  analysis/control variable 

𝑥௕ ⇒ background vector 

𝐵 ⇒ background error covariance matrix 

𝐻 ⇒ observation operator 

𝑅 ⇒ observation error covariance matrix (instrument error + representative error) 

𝑦௢ ⇒ observation vector 

 

The background error covariance matrix ‘B’ acts as a weighting to the correction made to the 

background fields. It also helps to spread information spatially and among the control variables. 

NMC method is one of the popular methods used for the computation of the ‘B’ matrix. It is a 

static method that uses lagged pairs of forecast values (i.e. 24 and 48-hour forecasts valid at the 

same time), sampled over a significantly long period. This method assumes linear error growth 

rate and same model bias. The ensemble method is a dynamical flow-dependent method used for 

updating the background error covariance which uses ensemble differences of forecasts. It works 

on the assumption that ensembles represent actual background errors. The observation error 

covariance matrix ‘R’ includes the error incorporated due to the observation measuring 

equipment and the errors of representativeness. The representative errors represent the errors of 

the observing system seen from an NWP model point of view (Huang et al. 2002). The error 

covariance matrices ‘B’ & ‘R’ are typical of the order of  𝑁ேௐ௉_௩௔௥௜௔௕௟௘௦
ଶ  and 𝑁௢௕௦

ଶ . 

 

The cost function in eq-3 attains a minimum value for 𝑥 ൌ  𝑥௔, called the analysis, such that 
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డ௃

డ௫
ൌ  𝛻௫𝐽ሺ𝑥௔ሻ ൌ 0 (4) 

Assuming that the analysis is close to the truth, we can write: 

 𝑥 ൌ  ሾ𝑥௕ ൅  ሺ𝑥 െ 𝑥௕ሻሿ, where ሺ𝑥 െ 𝑥௕ሻ is assumed to be small. 

Then we can linearize the observation operator: 

൫𝑦௢ െ 𝐻ሺ𝑥ሻ൯ ൌ 𝑦௢ െ  𝐻൫𝑥௕ ൅  ሺ𝑥 െ  𝑥௕ሻ൯ ൌ  ൫𝑦௢ െ 𝐻ሺ𝑥௕ሻ൯ െ 𝐻ሺ𝑥 െ 𝑥௕ሻ   (5)  

Substituting eq-5 into eq-3, we get: 

2𝐽ଷ஽௏௔௥ሺ𝑥ሻ ൌ  ሺ𝑥 െ 𝑥௕ሻ் 𝐵ିଵ ሺ𝑥 െ 𝑥௕ሻ

൅ ൣ൫𝑦௢ െ 𝐻ሺ𝑥௕ሻ൯ െ 𝐻ሺ𝑥 െ 𝑥௕ሻ൧
்

𝑅ିଵ ൣ൫𝑦௢ െ 𝐻ሺ𝑥௕ሻ൯ െ 𝐻ሺ𝑥 െ 𝑥௕ሻ൧ ൅ 𝐽௖ 

 (6) 

Expanding the products and ignoring the constraint term, we get: 

2𝐽ଷ஽௏௔௥ሺ𝑥ሻ ൌ  ሺ𝑥 െ 𝑥௕ሻ் 𝐵ିଵ ሺ𝑥 െ 𝑥௕ሻ ൅  ሺ𝑥 െ 𝑥௕ሻ் 𝐻் 𝑅ିଵ 𝐻ሺ𝑥 െ 𝑥௕ሻ

െ  ൫𝑦௢ െ 𝐻ሺ𝑥௕ሻ൯
்

 𝑅ିଵ 𝐻ሺ𝑥 െ 𝑥௕ሻ െ  ሺ𝑥 െ  𝑥௕ሻ் 𝐻் 𝑅ିଵ ൫𝑦௢ െ 𝐻ሺ𝑥௕ሻ൯

൅  ൫𝑦௢ െ 𝐻ሺ𝑥௕ሻ൯
்

 𝑅ିଵ ൫𝑦௢ െ 𝐻ሺ𝑥௕ሻ൯ ൅ 𝐽௖ 

 (7) 

The cost function equation is now a quadratic function of the analysis increments ሺ𝑥 െ 𝑥௕ሻ.   To 

minimize the cost function, we need to compute the gradient of 𝐽ଷ஽௏௔௥. 

 

Combining the first two terms of eq-7, we get: 

2𝐽ଷ஽௏௔௥ሺ𝑥ሻ ൌ   ሺ𝑥 െ  𝑥௕ሻ்ሺ𝐵ିଵ ൅ 𝐻் 𝑅ିଵ 𝐻ሻ ሺ𝑥 െ  𝑥௕ሻ െ ൫𝑦௢ െ 𝐻ሺ𝑥௕ሻ൯
்

 𝑅ିଵ 𝐻ሺ𝑥 െ 𝑥௕ሻ

െ  ሺ𝑥 െ 𝑥௕ሻ் 𝐻் 𝑅ିଵ ൫𝑦௢ െ 𝐻ሺ𝑥௕ሻ൯ ൅  ሺ𝑇𝑒𝑟𝑚 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑜𝑓 𝑥ሻ  

 (8) 

From eq-8, we get the gradient of the cost function 𝐽ଷ஽௏௔௥ with respect to x. 
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∇𝐽ଷ஽௏௔௥ሺ𝑥ሻ ൌ  ሺ𝐵ିଵ ൅  𝐻் 𝑅ିଵ 𝐻ሻ ሺ𝑥 െ  𝑥௕ሻ െ  𝐻் 𝑅ିଵ ൫𝑦௢ െ 𝐻ሺ𝑥௕ሻ൯  (9) 

 

Now,  

∇𝐽ଷ஽௏௔௥ሺ𝑥ሻ ൌ 0 for  𝑥 ൌ  𝑥௔ 

So, for ൌ  𝑥௔ , eq-9 can be written as: 

 ሺ𝐵ିଵ ൅  𝐻் 𝑅ିଵ 𝐻ሻ ሺ𝑥 െ 𝑥௕ሻ െ  𝐻் 𝑅ିଵ ൫𝑦௢ െ 𝐻ሺ𝑥௕ሻ൯ ൌ 0  (10) 

⇒ ሺ𝐵ିଵ ൅  𝐻் 𝑅ିଵ 𝐻ሻ ሺ𝑥௔ െ 𝑥௕ ሻ ൌ  𝐻் 𝑅ିଵ ൫𝑦௢ െ 𝐻ሺ𝑥௕ሻ൯ 

⇒  𝑥௔ ൌ  𝑥௕ ൅  ሺ𝐵ିଵ ൅  𝐻் 𝑅ିଵ 𝐻ሻିଵ 𝐻் 𝑅ିଵ ൫𝑦௢ െ 𝐻ሺ𝑥௕ሻ൯   

 

So, the solution of the 3-Dimensional Variational Analysis problem is: 

 

 (11) 

   

Comparing eq-11 with eq-1 gives the weight matrix for 3D-Var as: 

𝑊 ൌ  ሺ𝐵ିଵ ൅ 𝐻் 𝑅ିଵ 𝐻ሻିଵ 𝐻் 𝑅ିଵ (12) 

   

The solution of 𝑥௔ involves in practice, minimization algorithms for 𝐽ଷ஽௏௔௥ሺ𝑥ሻ using iterative 

methods for minimization such as conjugate gradient method or quasi-Newton method. 

 

3. 4D-Var: In 4D-Variational Data Assimilation, the cost function (eq-2) is represented as: 

 

𝑥௔ ൌ  𝑥௕ ൅  ሺ𝐵ିଵ ൅  𝐻் 𝑅ିଵ 𝐻ሻିଵ 𝐻் 𝑅ିଵ ൫𝑦௢ െ 𝐻ሺ𝑥௕ሻ൯ 
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𝐽ସ஽௏௔௥ሺ𝑥଴ሻ ൌ  
1
2

ሺ𝑥଴ െ 𝑥௕ሻ் 𝐵ିଵ ሺ𝑥଴ െ 𝑥௕ሻ

൅
1
2

෍ ቀ𝑦௜ െ 𝐻൫𝑀௜ሺ𝑥଴ሻ൯ቁ
்

𝑅௜
ିଵ  ቀ𝑦௜ െ 𝐻൫𝑀௜ሺ𝑥଴ሻ൯ቁ

ே

௜ୀ଴

൅  𝐽௖ 

 (13) 

where, 

𝑠𝑢𝑏𝑠𝑐𝑟𝑖𝑝𝑡 ′0′ ⇒ at time 𝑡଴ 

𝑠𝑢𝑏𝑠𝑐𝑟𝑖𝑝𝑡 ′𝑖′ ⇒ at time 𝑡௜ 

𝑁 ⇒ Number of Observational Vectors 𝑦௜ distributed over time. 

 

In 3D-Var, the observations for assimilation are considered within a single time window centred 

on the analysis time. For each observational site, the assimilation system will select the 

observation closest in time to the analysis time. Other observations from the site, if present is 

rejected. Whereas in 4D-Var, the observations are binned into time slots ‘i’. ′𝑀௜′ is the NWP 

model operator which converts the state vector 𝑥଴ into its forecast values at time ‘i’. This enables 

the use of observations from the same site obtained at different times. Also, it minimizes the 

offset in time between the time of the observations and the valid time for the forecast fields 

against which the observations are compared (Huang et al. 2002). 

 

The atmospheric flow is governed by several dynamical and physical laws. The NWP model can 

be symbolically written as:  𝑥௜ାଵ ൌ  𝑀௜ାଵ,௜ሺ𝑥௜ሻ  (14) 

where 𝑀௜ାଵ,௜ is the non-linear NWP model from time 𝑡௜ 𝑡𝑜 𝑡௜ାଵ . A perturbation of the 

atmospheric state is evolved by the tangent linear model: 𝛿𝑥௜ାଵ ൌ  𝐌𝐢ା𝟏,𝐢 ሺ𝑥௜ሻ 𝛿𝑥௜  (15) 

 

Substituting eq-14 in eq-13, the gradient of 𝐽ସ஽௏௔௥ሺ𝑥଴ሻ with respect to 𝑥଴ becomes: 
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 (16) 

   

where, 

𝐇𝐢  ⇒ the tangent linear operator of the observation operator 𝐻௜ ( 𝐇𝐢
𝐓 is the corresponding adjoint 

operator and is simply the complex-conjugate transpose of the tangent linear by definition) 

𝐌௜,଴
୘ ൌ  𝐌ଵ,଴

்  𝐌ଶ,ଵ
் … 𝐌௜,௜ିଵ

்  ⇒ the adjoint model and is a backward integration from time 

𝑡௜ 𝑡𝑜 𝑡଴ 

 

In 4D-variational data assimilation too, the gradient of the cost function (eq-16) is solved 

iteratively. In the first step of the iteration, moving forward in time the first guess trajectory and 

the observation departures or innovations ൫𝑦௜ െ 𝐻ሺ𝒙𝒊ሻ൯ are computed by integrating the non-

linear model in eq-14. Using the first guess trajectory, the adjoint model is integrated backwards 

in time and, the observation forcing 𝐇௜
் 𝑅௜

ିଵ ൫𝑦௜ െ 𝐻ሺ𝒙𝒊ሻ൯ is added to the adjoint variable 

computed in the previous step. The integrated final value of the adjoint variable plus the 

background term gradient 𝐵ିଵ ሺ𝑥଴ െ  𝑥௕ሻ  is the gradient ∇𝐽ସ஽௏௔௥ of the cost function with 

respect to the control variable 𝑥଴ for the present iteration step. The first guess is updated with the 

computed gradient of the cost function. These steps are iterated starting with the updated first 

guess value till the convergence criteria are fulfilled. 

 

References 

Gandin, L. S., 1963: Objective analysis of meteorological fields. Gidrometerologicheskoe 

Izdatelstvo, Leningrad. English translation by Israeli Program for Scientific Translations, 

Jerusalem, 1965. 

Huang, Xiang-Yu & Henrik Vedel, 2002: An Introduction to Data Assimilation. 

∇௫బ
𝐽ସ஽௏௔௥ሺ𝑥଴ሻ ൌ  𝐵ିଵ ሺ𝑥଴ െ 𝑥௕ሻ ൅ ෍ 𝐌௜,଴

்

ே

௜ୀ଴

𝐇௜
் 𝑅௜

ିଵ ൫𝑦௜ െ 𝐻ሺ𝒙𝒊ሻ൯ ൌ 0 
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